Effects of Terrain and Manmade Structures on Aircraft Noise Prediction

<u>J. Micah Downing, PhD</u> and Matthew F. Calton Blue Ridge Research and Consulting, LLC, Asheville, NC

Juliet A. Page Volpe, The National Transportation System Center, Cambridge, MA

> Judith L. Rochat, PhD Cross-Spectrum Acoustics, Pasadena, CA

I. Project Overview

II. Evaluation of Selected Methods

- A. Benchmarking Results
- B. Evaluation of Empirical Datasets
- C. Airport Measurements
- III. Blended Method

Spupio as

ACRP 02-79 Project Overview

Develop and Evaluate Noise Propagation Methods

- Aircraft noise reflection and diffraction from terrain and manmade structures
- Both ground and airborne aircraft operations

Recommend Methods for Inclusion into AEDT

- Both the physics and the software integration process
- Influence these methods will have on AEDT's data input requirements, computational load, while considering uncertainty

Provide Recommendations for Potential Additions to the AEDT User Guide

- Influence terrain and manmade structures have on aircraft noise at receivers
- Applications these new methods have for airport noise analyses
- Guidance on when these methods should be employed

ACRP 02-79 Project Results and Status

- Primary Methods Selected
- Evaluation of Methods Nearing Completion
 - Benchmarking cases completed
 - Measured datasets
 - Sensitivities
- ✓ Airport Noise Measurements
 - LAX & LGB
 - Interesting acoustical observations
 - Excellent database
- Designed Blended Method
 - Balancing physics and computational frameworks
 - AEDT Integration

- I. Project Overview and Status
- **II. Evaluation of Selected Methods**
 - A. Benchmarking Results
 - B. Evaluation of Empirical Datasets
 - C. Airport Measurements
- **III.** Coordination Plan for Review

Spupio as

(O) Cross-Spectrum Acoustics

Heights

(m)

1.5

12.5

50

100

400

800

Barrier

NCHRP

Pink Noise: 100 dB/OTOB

Results in ΔdB (With – Without Building)

Cross-Spectrum Acoustics

500

64

64

Comparison of Model & Methods Results

Building (64 H x 16 D x 64 W), Source Distance at 400 m

Effect of Source Distance

Building (64 H x 16 D x 64 W), CadnaA ISO 9613-2

NEXT WINE NOISE - M NOISE - M

Effect of Source Height

Building (64 H x 16 D x 64 W), CadnaA ISO 9613-2

NEXT W/WE ENDISE CONTROL ENDISE CONT

Effect of Building Width

Source at Distance of 100m and at Height of 12.5m, SoundPLAN NORD2000

Summary

- Provides a detailed comparison of models and methods
- Demonstrates general trends
- Provides an initial estimate of the region of influence for buildings
- Will be compared with measured airport data
- Aid in defining the transition regions for the blended method

I. Project Overview and Status

II. Evaluation of Selected Methods

- A. Benchmarking Results
- **B.** Evaluation of Empirical Datasets
- C. Airport Measurements
- **III.** Coordination Plan for Review

SDUPIO a8

Models/Methods evaluated by comparing predictions to legacy empirical datasets

- > Focused on reflection and shielding effects
- > Examined with and without effect implemented

NEXT WAVE NOISE CONTROL

Terrain

(O) Cross-Spectrum Acoustics

Terrain – Summary

Airborne Elevated Sources:

Ground-To-Ground Propagation:

Manmade Structures and Barriers

EXT W/W

Cross-Spectrum Acoustics

Manmade Structures – Summary

Building Reflection from Distant Source:

Noise Wall Reflection:

Diffraction Over Noise Walls:

I. Project Overview and Status

II. Evaluation of Selected Methods

- A. Benchmarking Results
- B. Evaluation of Empirical Datasets
- C. Airport Measurements
- III. Blended Method

Spupio as

Data CSLIME SEMIL CA OPC

36

El Segundo

Measurement Notes

Most sites provide shielding and reflections from one-story houses

Aircraft were readily localized even when not visible

Kittyhawk Ave

Cross-Spectrum Acoustics

Playa del Oro

Measurement Notes

Several sites were selected to measure the effect of reflections from a four-story apartment building.

Measurements immediately in front of the large building were compared with nearby sites that had no large reflectors.

Hotel District

IIIIII IIII

Measurement Notes

Buildings between two and ten stories provided reflections and shielding of aircraft flyovers.

Data Analysis

- Isolated events by aircraft type and airline, where possible
- 566 individual measured SEL events

Site Name	Number of Flights	Number of Number of Sites Recordings Removed		Total Measured Data Points	
LGB	30	11	32	298	
El Segundo	20	9	4	176	
Kittyhawk	14	3	0	42	
Playa del Oro	10	5	0	50	

- 46 comparison events on average, grouped by operation type and shielding/reflection effect
- Calculated SEL and L_{Amax} for each event with AEDT
- Calculated difference between average measured values (M_{SEL}) versus predicted (P_{AEDT})
- Compared the calculated Gain/Loss (GL_{BM}) with the differences

Summary of Results

Overall SEL Comparisons

Operation	Measured-AEDT		Offset TNM		Offset ISO 9613-2	
Туре	Ave	St Dev	Ave	St Dev	Ave	St Dev
All	-1.9	4.8	0.9	3.9	0.1	4.4
Arrival	-0.1	2.7	0.2	2.8	-1.2	3.8
Departure	-2.3	4.9	1.4	3.9	0.6	4.2

Grouped SEL Comparisons

Ор Туре	Effect	Measured-AEDT		Offset TNM		Offset ISO 9613-2	
		Ave	St Dev	Ave	St Dev	Ave	St Dev
Arrivals	Shielding	-0.9	3.5	-0.3	3.7	-1.8	5.3
	Reflection	0.3	2.3	0.5	2.4	-0.9	3.2
Departures	Shielding	-5.8	4.6	2.0	5.0	2.1	5.2
	Reflection	0.6	3.3	0.6	3.1	-0.6	3.1

- I. Project Overview and Status
- **II.** Evaluation of Selected Methods
 - A. Benchmarking Results
 - B. Evaluation of Empirical Datasets
 - C. Airport Measurements
- III. Blended Method

Spupio as

Overview of Blended Method

- NoiseMap integration method
- Included over entire calculation region

Overview of Blended Method

Dense array

Overview of Blended Method

Utilizing linear acoustics, predictions obtained in the existing AEDT integrated framework can be combined with reflection gains and insertion loss from nearby structures

Blended Method Calculation

Building Effect: Stand-Alone Calculation

Advantages

- > One-time calculation of gain/loss on a 1/3-octave band basis
- > Develop a library of gain/loss factors that can be applied to AEDT results
- Toggle results on/off
- Provide efficient computations
- Capture localized building effects

Blended Method Region of Influence

> Based on Magnitude of Effects Driven by shielding loss Driven by arrivals **Extent** Based on <0.5 dBA shielding effect</p> Based on 152 m AGL • 2,621 m along extended runway centerline • 2,200 m lateral to runway Transition Region Simple linear interpolation 1,000 ft distance (<0.5 dBA change)</p>

Questions

Ô

Google Farth

AEDT Integration

- Interface with AEDT
 - Operations defined using current AEDT input method
 - Buildings imported via 3D layers and/or direct user input
- TNM 3.0 (modified) calculates building gain/loss
- Returns a library of gain/loss grids to AEDT
- AEDT applies gain/loss grids to output to account for building gain/loss (blended method)

